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Abstract

We present the runtime comparison of the two versions of SuperL U_DIST, using up to 128
processors of the IBM SP at NERSC. One version provides the global input interface, and
another provides the distributed input interface. The comparison includes the total runtime
of the solver with both 32-bit and 64-bit addressing modes, the time breakdown for different
phases of the solver. We also present an in-depth comparison of four sparse matrix-vector
multiplication methods in the context of iterative refinement. Finally, we describe our Fortran
90 interface that enhances the usability of the software.

1 Introduction

SuperLU_DIST [2, 4] is a distributed-memory sparse direct solver for large sets of linear equations
AX = B. It has gone through two versions of release: Ver 1.0 and Ver 2.0. The major difference
between them is that Ver 1.0 uses a global input interface, whereas Ver 2.0 uses a distributed
input interface. In other words, in Ver 1.0, every processor needs to have the whole global input
matrices A and B, and the sparse matrix A is in compressed column format (a.k.a. Harwell-Boeing
format). In Ver 2.0, each processor only owns a block of consective rows of the input matrices,
and the local part of sparse A is in compressed row format. Interprocessor communication is
needed to convert the input distribution to the internal data distribution. In this report, we
evaluate the performance of these two versions of SuperL U_DIST and attemp to further improve
the performance of SuperL U_DIST Ver 2.0.

The rest of this paper is organized as follows. In Section 2, we first review the main implemen-
tation differences between the two versions of the software. In Section 3, we discuss the results
obtained from the extensive experiments we have conducted to evaluate the performance of Su-
perLU_DIST. Section 4 describes the Fortran 90 interface we have developed. A brief conclusion
is given in Section 5.

2 SuperLU_DIST

In this section, we briefly review the GESP algorithm (Gaussian Elimination with Static Pivoting
[5]) used in SuperLU_DIST. Please refer to [4] for more details. The algorithm consists of the
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following steps:

Algorithm 1 The GESP algorithm

1.

co =~ O Ot =~ W

Perform row/column equilibration: A «— D, AD,, where D, and D, are diagonal matrices
chosen so that the largest entry of each row and column is +1.

Perform row permutation: A «— P, A, where P, is chosen to make the diagonal large compared
to the off-diagonal.

Find a column permutation P, to preserve sparsity: A «— P,APT

Perform symbolic analysis to determine the nonzero structures of L and U.
Distribute L and U data structures onto the processor grid (P = nprow x npcol).
Factorize A = LU with control of diagonal magnitude.

Perform triangular solutions using L and U.

If needed, perform iterative refinement.

As can be seen in Algorithm 1, the input matrix A goes through a sequence of transformations
before it is factorized. Comparing Ver 1.0 and Ver 2.0, some of the above steps are identical,
including steps 2, 3, 4 and 6. Their algorithmic descriptions were given elsewhere [1, 4].

We now describe the implementation differences between the two versions. These include steps
1,5, 7 and 8. For convenience, we associate with each step a label which will be used later when we

present the timing results. We also list the corresponding double-precision routine name in each
version.

Step 1

Step b

Step 7

EQUIL (Ver 1.0: dgsequ, Ver 2.0: pdgsequ)

In both versions, the scaling factors (diagonals of D, and D,) are replicated on each processor.
In Ver 1.0, the scaling factors are computed by processor 0, and then broadcasted to all the
other processors. In Ver 2.0, they are computed in parallel.

DISTRIBUTE (Ver 1.0: ddistribute, Ver 2.0: pddistribute)

In both versions, after symbolic factorization, the supernodal graph of L and the skeleton
graph of U are replicated on all the processors. Based on these graphs, each processor sets
up the local L and U data structures by extracting only the part of the graphs the processor
owns. The difference between the two versions lies in how the initial values of A are loaded
into the L and U data structures. In Ver 1.0, this is a simple matter of extracting the
local part of A from the global A, because global A is available on every processor. In Ver
2.0, however, data re-distribution is needed, because the input A is by one-dimensional block
mapping, whereas L and U are by two-dimensional block-cyclic mapping. This re-distribution
involves all-to-all communication.

SOLVE (Ver 1.0: pdgsirs_Bglobal, Ver 2.0: pdgsirs)

In the beginning of the solution phase, we need to distribute the right-hand side B on the
processors who own the diagonal blocks of L and U. We call these processors diagonal
processors. In the end, the solution vector resides on the diagonal processors. We need to
re-distribute it to the right-hand side B. Ver 1.0 and 2.0 differ in the way the re-distribution
works, because B is distributed differently on input. In Ver 1.0, B is globally available on
each processor. So each diagonal processor can simply extracts the local part of B to start
the solve. In the end, the diagonal processors “broadcast” their local parts to all the other
processors, so X is globally available on each processor. In Ver 2.0, B is distributed by block
rows among all the processors. Before triangular solve, we re-distribute B to the diagonal
processors. After the solve, we perform another re-distribution from the diagonal processors
to all processors, so that X is distributed by block rows among all the processors.



Step 8 REFINE (Ver 1.0: pdgsrfs_-ABXglobal, Ver 2.0: pdgsrfs)

The kernels of iterative refinement are sparse matrix-vector multiplication (SMVM) to com-
pute residual r = b— Az and triangular solve to compute the correction term. The triangular
solve works the same as described above. For Ver 1.0, SMVM is easy, because each processor
has the global data A and z, it perform multiplication using only part of the global data. For
Ver 2.0, each processor computes a block of r that it owns. There is no need to communicate
A if we use inner-product version of the multiplication algorithm. However, there is a need to
communicate . The algorithm consists of a setup phase and an actual multiplication phase.
In the setup phase, we processor the graph of A, and performs all-to-all communication to
determine for each processor which z components need to be sent to which other processors.
After this phase, the communication schedule for x is saved on each processor. In the actual
multiplication, we use this communication schedule to transfer . Note that the setup is
needed only once before the iterative refinement loop.

3 Performance Evaluation

In this section, we evaluate the performance of SuperL U_DIST on the IBM POWER3 SMP machine
at NERSC. The processors are distributed among 380 compute nodes with 16 processors per node.
Each compute node has between 16 and 64 GBytes of memory. Each processor is clocked at 375
MHz and has a peak performance of 1.5 Gflops. In all of our runs, we use as many processors as
possible per node. We use a set of large matrices from various application domains. The matrices
are available from University of Florida Sparse Matrix collection®, the forthcoming Rutherford-
Boeing Sparse Matrix Collection [7] 2, and the industrial partners of the PARASOL Project 3.
The last three matrices in the table are from the next-generation accelerator design project at
SLAC. The characteristics of these matrices are presented in Table 1. It includes the matrix order,
the number of nonzeros in the matrix A, the number of nonzeros in the factors L and U using
minimum degree (MMD) ordering [8] on AT 4+ A, the number of supernodes N, and the number
of floating-point operations. For the three largest matrices from SLAC, we also used the nested
dissection (WD) ordering from Metis [9]. The last column gives the average number of nonzeros per
supernode, nnz(L + U)/N, which is a certain measure of the sparsity of the filled matrix.

Matrix Order nnz(A) | nnz(L+U) N | Flops(F) | nnz(L+U)/N
x 108 x10° x 103

bbmat 38744 | 1771722 36.1 7128 26.28 5.06
fidapm11 22294 623554 25.6 2610 24.11 9.81
wang4 26064 177196 10.7 6961 8.79 1.54
twotone 120750 1224224 11.4 38939 7.59 0.29
mixing-tank 29957 | 1995041 44.6 2538 76.84 17.57
inv-extrusion-1 | 30412 1793881 30.2 4129 32.46 7.31
ecl32 51993 380415 41.9 19168 60.74 2.19
ir 186230 2910202 | (MMD) 132.7 25778 148.48 5.15
(vp) 89.8 | 31498 66.19 2.85

dds.quadratic 380698 | 15844364 | (MMD) 642.5 36877 2120.75 17.42
(WD) 325.0 | 41362 |  491.04 7.86

dds15 834575 | 13100653 | (MMD) 875.3 | 114929 1576.43 7.62
(8D) 526.6 | 141060 600.58 3.73

Table 1: Characteristics of the benchmark matrices.

Thttp://www.cise.ufl.edu/research /sparse/matrices/
2http://www.cse.clrc.ac.uk /nag/hb/
3EU ESPRIT IV LTR Project 20160, matrices available at http://www.parallab.uib.no/parasol/



3.1 Overall Comparison Between Ver 1.0 and Ver 2.0

In the first set of experiments, we run both versions of SuperL U_DIST with the test matrices using
different number of processors. The running times in seconds of each step of SuperLU_DIST are
shown in Tables 2 to 6. Since steps 2 (row permutation), 3 (column permutation), 4 (symbolic
analysis) and 6 (numerical factorization) are the same in both versions, in most of the tables
(Tables 3 to 6) we only list the running times of the other four steps. To show the relative running
time of all steps, we also list the running time of steps 2, 3, 4, 6 in Table 2. In the second columns
of all these tables, “dis” denotes Ver 2.0 in which each processor has the distributed input matrix
and “glb” denotes Ver 1.0 in which each processor has the global input matrix. All running time
listed in the talbes are in seconds.

Matrix Version || Step 2 | Step 3 Step 4 Step 6 Mflops
(MC64) (MMD) | (SymFact) | (Factor) | in Step 6

bbmat glb 1.83 6.97 1.35 7.44 3424.84
dis 1.74 6.99 1.35 7.39 3555.82

fidapm11 glb 2.23 1.08 0.85 4.83 5557.03
dis 2.21 1.04 0.81 4.65 5190.35

wang4 glb 0.12 0.35 0.35 2.27 3870.40
dis 0.11 0.34 0.35 2.42 3634.56

twotone glb 0.91 6.48 0.96 18.01 421.41
dis 0.82 6.47 0.94 17.47 434.44

mixing-tank glb 1.34 1.17 1.32 9.37 8509.45
dis 1.32 1.18 1.33 9.30 8261.58

inv-extrusion-1 glb 5.30 1.54 1.47 6.14 4681.55
dis 5.43 1.53 1.28 7.40 4383.50

ecl32 glb 0.26 1.38 1.35 9.31 6524.30
dis 0.24 1.39 1.36 9.26 6561.07

ir glb 1.65 4.69 3.99 18.78 7910.93
dis 1.42 4.95 4.01 19.24 7723.66

dds.quadratic glb 7.24 11.05 18.10 67.69 | 31441.25
dis 6.36 11.11 18.14 67.40 | 31573.26

dds15 glb 7.42 34.67 25.56 104.36 | 15196.59
dis 6.49 36.68 25.82 106.06 | 14952.87

Table 2: The running time of steps 2 (row permutation), 3 (column permutation), 4 (symbolic
analysis) and 6 (numerical factorization) of Ver 1.0 and Ver 2.0. The last column shows the Mflops
in the numerical factorization step. Here, for the first seven matrices P = 4 x 4, while for the last
three large matrices P = 8 x 16.

We first look at the time difference of the individual steps. In the EQUIL step, Ver 1.0 is
clearly slower, because there is no parallelism, and the broadcast time increases with increasing
numbers of processors. For Ver 2.0, we get some speedup when the number of processors is small,
but time is flat for larger numbers of processors because the communication starts to dominate the
computation. Note that EQUIL usually takes very small fraction of the total runtime, so it is not
critical to improve its speed.

In the DISTRIBUTE step, both versions achieve good speedup. Ver 1.0 has more local memory
access, without the need for any communication. Whereas Ver 2.0 has less data access, but needs
to do much all-to-all communication for data re-distribution. Ver 2.0 is expected to be slower than
Ver 1.0. But it is interesting to see that Ver 2.0 is only slightly slower in many cases, even with
128 processors and for the largest problems. The similar situation also happens for the SOLVE
step.

In the REFINE step, in most cases, Ver 2.0 is clearly a little bit faster than Ver 1.0. The reason
may come from two aspects: (1) in Ver 1.0, for SMVM, it also has a setup phase to prepare the local



EQUIL | Version | P=1x1 | P=2x2| P=4x4 | P=8x8 | P=8x16

bbmat glb 0.12 0.14 0.18 - -
dis 0.12 0.05 0.06 - -
fidapm11 glb 0.05 0.05 0.07 - -
dis 0.05 0.02 0.04 - -
wang4 glb 0.02 0.03 0.03 - -
dis 0.02 0.02 0.04 - -
twotone glb 0.13 0.16 0.21 0.25 0.26
dis 0.12 0.08 0.09 0.14 0.14
mixing-tank glb 0.14 0.14 0.18 0.19 0.20
dis 0.13 0.05 0.05 0.06 0.07
inv-extrusion-1 glb 0.12 0.13 0.16 0.18 0.18
dis 0.12 0.11 0.08 0.06 0.07
ecl32 glb 0.04 0.06 0.07 0.08 0.09
dis 0.04 0.03 0.05 0.07 0.07
ir glb 0.25 0.30 0.44 0.48 0.52
dis 0.23 0.18 0.19 0.20 0.21
dds.quadratic glb - - 1.33 1.82 1.92
dis - - 0.39 0.45 0.48
dds15 glb - - 1.61 2.24 2.32
dis - - 0.55 0.88 0.97

Table 3: The running time of EQUIL step of Ver 1.0 and Ver 2.0.

DISTRIBUTE | Version | P=1x1][ P=2x2][ P=4x4 | P=8x8] P=8x16

bbmat glb 5.69 2.00 1.01 - -
dis 6.29 2.03 1.00 - -
fidapm11 glb 3.07 1.20 0.44 - -
dis 3.19 1.05 0.52 - -
wang4 glb 2.63 0.82 0.32 - -
dis 2.66 0.81 0.33 - -
twotone glb 50.74 13.27 3.53 1.23 0.88
dis 44.16 11.73 3.50 1.36 1.05
mixing-tank glb 5.71 1.64 0.67 0.48 0.41
dis 6.77 1.89 0.70 0.43 0.43
inv-extrusion-1 glb 4.14 1.50 0.71 0.44 0.45
dis 5.08 1.76 0.71 0.52 0.52
ecl32 glb 16.73 4.09 1.32 0.56 0.38
dis 15.14 4.11 1.46 0.94 0.50
ir glb 35.61 10.36 3.35 1.14 1.11
dis 33.71 10.08 3.29 1.41 1.22
dds.quadratic glb - - 9.53 4.64 3.52
dis - - 9.63 4.79 3.83
dds15 glb - - 37.74 12.47 9.87
dis - - 35.85 12.55 9.98

Table 4: The running time of DISTRIBUTE step of Ver 1.0 and Ver 2.0.




SOLVE

| Version | P=1x1 | P=2x2| P=4x4 | P=8x8 | P=8x16

bbmat glb 1.61 0.64 0.43 - -
dis 1.65 0.66 0.45 - -
fidapm11 glb 0.96 0.36 0.21 - -
dis 0.93 0.36 0.19 - -
wang4 glb 0.61 0.33 0.28 - -
dis 0.64 0.33 0.30 - -
twotone glb 2.78 1.95 1.62 1.22 1.87
dis 3.01 1.89 1.63 1.44 1.86
mixing-tank glb 1.30 0.46 0.23 0.15 0.13
dis 1.31 0.46 0.23 0.16 0.19
inv-extrusion-1 glb 1.23 0.50 0.30 0.18 0.21
dis 1.29 0.53 0.32 0.20 0.26
ecl32 glb 1.98 0.91 0.79 0.52 0.70
dis 1.98 0.88 0.69 0.58 0.93
ir glb 5.03 2.12 1.53 1.22 1.29
dis 5.44 2.19 1.55 1.19 1.37
dds.quadratic glb - - 2.98 1.79 2.00
dis - - 3.07 1.89 2.08
dds15 glb - - 8.36 5.04 6.68
dis - - 8.80 5.28 7.08
Table 5: The running time of SOLVE step of Ver 1.0 and Ver 2.0.
| REFINE | Version | P=1x1] P=2x2] P=4x4] P=8x8] P=8x16
bbmat glb 8.78 (8.77) | 4.02 (3.92) 2.59 (3.13) - -
dis 8.75 (8.59) | 3.43 (3.38) 2.28 (2.29) - -
fidapm11 glb 1.11 (1.04) | 0.44 (0.46) 0.26 (0.31) - -
dis 1.01 (0.97) | 0.39 (0.37) 0.20 (0.34) - -
wangd glb 1.31 (1.33) | 0.88 (0. 70) 0.69 (0.66) - -
dis 1.32 (1.32) | 0.68 (0.69) 0.61 (0.61) - -
twotone glb 6.14 (5.98) | 7.68 (4.11) | 5.61 (3.75) | 3.45 (3.07) | 3.86 (3.79)
dis 6.32 (6.03) | 3.86 (5.82) | 3.30 (3.49) | 277 (3.96) | 3.72 (5.23)
mixing-tank glb 1.79 (1.55) | 0.67 (0.73) | 0.36 (0.57) | 0.27 (0.65) | 0.26 (0.52)
dis 1.58 (1.44) | 0.55 (0.50) | 0.27 (0.25) |  0.19 (0.19) |  0.24 (0.23)
inv-extrusion-1 | glb 429 (4.17) | 1.85 (2.00) 1.10(1.54) | 0.76 (1.29) | 0.82 (1.45)
dis 5.60 (5.51) | 2.25 (2.21) | 1.34 (1.32) | 0.88 (1.12) | 1.31 (1.15)
ecl32 glb 412(4.03) | 3.43 (1.83) | 2.7 (1.52) | 1.33 (1.33) | 174 (1.71)
dis 4.06 (4.20) | 1.80 (1.78) |  1.42 (1.40) | 1.19 (1.19) | 1.76 (1.68)
ir glb 1114 (11.10) | 7.03 (5.22) | 433 (4.36) | 298 (3.54) | 3.00 (3.92)
dis 11.54 (10.81) | 4.58 (4.56) | 3.17 (3.31) | 2.42 (2.41) |  2.80 (2.90)
dds.quadratic glb - - 9.30 (9.74) 5.26 (8.54) 5.32 (8.74)
dis - - | 6.35(6.28) | 3.89 (3.96) | 4.24 (4.54)
dds15 glb - ~ [ 35.04 (21.28) | 19.47 (15.57) | 15.82 (19.01)
dis - - | 17.50 (17.45) | 10.50 (10.92) | 13.92 (13.76)

Table 6: The running time of REFINE step of Ver 1.0 and Ver 2.0.




TOTAL Version [ P=1x1][ P=2x2[P=4x4 [ P=8x8[P=8x16

bbmat glb 89.09 35.58 21.91 - -
dis 90.83 35.50 21.62 - -
fidapm11 glb 57.78 19.89 9.98 - -
dis 54.57 18.83 9.78 - -
wang4 glb 19.07 7.39 4.44 - -
dis 19.20 7.18 4.56 - -
twotone glb 248.20 85.83 37.43 25.44 25.25
dis 245.69 83.87 34.53 25.13 25.28
mixing-tank glb 122.70 37.80 14.73 10.31 9.67
dis 121.66 38.47 14.96 10.61 10.18
inv-extrusion-1 glb 83.13 30.09 16.79 14.54 15.06
dis 98.07 36.22 18.69 15.18 16.07
ecl32 glb 120.06 37.76 16.57 11.74 12.31
dis 118.47 37.06 15.99 11.98 12.41
ir glb 285.09 96.05 44.58 35.67 35.21
dis 285.92 94.52 43.73 35.02 36.09
dds.quadratic glb - - 290.81 136.33 117.40
dis - - 281.31 135.84 118.24
dds15 glb - - 351.48 225.84 206.71
dis - - 331.24 218.75 209.07

Table 7: The total running time of Ver 1.0 and Ver 2.0.

part of A and transfer it to a distributed modified sparse row (MSR) matrix. This phase maybe
much more time consuming than the setup phase of SMVM in Ver 2.0. This is comfirmed by the
experimental results in Section 3.3. (2) in both Ver 1.0 and Ver 2.0, before and after the triangular
solve in the refinement step, there are some procedures to distribute or gather data betweeen
the diagonal processors and all processors. However, due to the different storage sturctures for
the right hand side (one is global, the other is distributed), these procedures can be more time
consuming in Ver 1.0 than in Ver 2.0. In other words, Ver 1.0 needs more comunications in these
procedures. The data in parentheses are the running times of optional SMVM methods for both
versions, which we will explain in Section 3.3.

Finally, we compare the overall performance of the two versions. Table 7 gives the total running
times of both versions, including all eight steps of Algorithm 1. The results show that there is
no much difference in runtime between Ver 1.0 and Ver 2.0. It is clear that the amount of more
communication in Ver 2.0 can well offset the cost of the amount of more local memory access in
Ver 1.0. For some cases, Ver 2.0 is even faster than Ver 1.0.

3.2 Comparison Between 32-bit and 64-bit Pointers and Integers

In this section, we compare the time difference between compiling the code in 32-bit and in 64-bit.
SuperLU_DIST is implemented in such a way that it can be compiled with the following three
modes:

Mode 1 Using 32 bit addressing and 32 bit integer (default int)

Mode 2 Using 64 bit addressing and 32 bit integer (default int)
This is needed if one MPI task needs to access more than 2 GBytes memory on the IBM SP.
The compiler flag i1s “-q64”.

Mode 3 Using 64 bit addressing and 64 bit integer (default long int)
This is needed when the matrix is very large. The compiler flag is “~q64 -D_LONGINT”.



We tested all these modes on two largest matrices: dds.quadratic and dds15. The results are given
in Table 8. In most cases, the code is slower with more bits used, as expected. From Mode 1 to
Mode 2, the slowdown is no more than 17% (dds.15 on 128 processors). From Mode 2 to Mode
3, the slowdown is no more than 79% (dds.15 on 64 processors). From Mode 1 to Mode 3, the
slowdown can be as large as a factor of two (dds.15 on 64 processors).

TOTAL TIME dds.15 dds.quadratic
(in seconds) P:4><4|P:8><8|P:8><16 P=4x14 |P:8><8|P:8><16
Ver 1.0
Mode 1 351.48 230.06 209.86 290.81(281.54) 143.27 123.56
Mode 2 401.56 263.54 244.37 280.68(278.06) 150.84 138.02
Mode 3 394.84 472.64 300.07 281.82(281.33) 162.17 149.12
Ver 2.0 with dis-smvm
Mode 1 330.60 220.08 209.81 291.87(282.03) 139.13 123.70
Mode 2 377.02 242.06 232.64 281.28(276.36) 147.70 132.66
Mode 3 378.13 395.76 280.65 280.14(280.43) 159.99 144.30
Ver 2.0 with dis-smvm-brdcst
Mode 1 331.16 218.65 208.18 289.41(287.75) 138.59 120.55
Mode 2 384.57 252.28 241.73 281.99(277.04) 151.11 132.96
Mode 3 372.79 370.60 272.17 280.73(280.69) 160.70 142.81

Table 8: The total running time of SuperL U_DIST using different addressing modes.

3.3 Different Methods for Parallel Sparse Matrix-Vector Multiplication

In this section, we examine more closely the performance of parallel sparse matrix-vector multipli-
cation (SMVM). This is used in our iterative refinement routine to compute the residual r = b— Az.
It is also of great interest by itself because it is a key kernel in most iterative solvers. Consider
y «— Az. Recall that in Ver 2.0 the input matrix A is distributed by block rows. For each ¢, we
need to compute y; = 2?21 a; jx;, where a; ; are on the same processor for all j. But some z; may
be on some other processor, so there is a need to communicate the £ components. We implemented
two different algorithms communicating  in Ver 2.0. The first algorithm was proposed in [6], and
consists of an initialization phase and an actual multiplication phase. In the initialization phase,
each processor processes the local graph of A (i.e., all a; ;), and determines all the j’s such that
x; is nonlocal. It then informs those processors who own z; so that they know they need to send
x; to this processor. This phase involves an all-to-all communication so in the end every processor
knowns which of my local z; needs to be sent to which other processors. Some optimization is
performed to reduce communication. For example, if a processor needs to send several z;’s to one
other processor, these x;’s are packed into one message, so that each processor sends no more than
one message to any other processor. Note that the initialization phase is time-consuming, so we
run it only once and save the communication pattern. In the actual multiplication phase, each
processor sends the corresponding local parts of & to the processors who need them. Each processor
also receives all those nonlocal parts of z, and together with the local part of z, it then performs
the multiplication. This algorithm is called dis-smvm. As a comparison, we also implemented
a simpler algorithm, in which each processor just broadcasts its local part of = to all the other
processors, then all the processors get the global . This algorithm is called dis-smvm-brdest.
In Ver 1.0 with the golbal interface, matrix A is stored in compressed column storage. Our first
algorithm consists of an initialization phase, in which matrix A is converted into the distributed
compressed row format. After this transposition, the actual multiplication becomes embarrassingly
parallel. We call this algorithm glb-smvm. Our second algorithm is completely sequential (since




A and B are globally available on each processor), and the multiplication is performed replicatedly
on each processor. No communication is involved. We call this algorithm glb-smvm-sequential.

In Table 9 we give timings of the above four algorithms with three largest matrices, using 64
and 128 processors, both minimum degree and nested dissection orderings. The timings are divided
into the time of the entire iterative refinement routine, the time for SMVM initialization, and the
time for one multiplication. Note that the initialization step of dis-smvm gathers the information
of which parts of z to send/receive and where to send/receive, whereas the initialization step of
dis-smvm-brdcst only needs to gather the information of the number of nonlocal rows, which
takes much less time. However, in each iteration, the dis-smvm-brdcst uses much more time
than dis-smvm. The reason is that the number of messages and message volume transferred in
dis-smvm are much less than that in dis-smvm-brdcst. This can be seen from Table 10, which
gives the ranges of the size and number of messages transferred by each processor with dis-smvm,
whereas with dis-smvm-brdcst, every processor needs to send a message to every other processor.
The third column of Table 10 shows the ranges of the number of nonzeros local to each processor.
Since the input matrix A is evenly distibuted by block rows, the number of rows on each processor
is almost the same, while the number of nonzeros is not (which can also be seen in Figures 1
to 3). The fourth and fifth columns of Table 10 give the percentage of x entries transferred by
each processor. Figures 1 to 3 show the detailed distribution of the size and number of messages
transferred by each processor with dis-smvm, using 64 processors with three largest matrices: ir,
dds.quadratic, dds15. We observe that the curves of the message size recieved and the number of
local nonzeros have similar pattern in Figures 1 and 2. It shows that if there are more nonzeros in a
processor, it may require more entries of z from the other processors. In Figure 3, this observation
is not clear. This is because even if the number of nonzeros on one processor is large, many of
them maybe in the same column, which means these nonzeros (in the same column) only require
one element of z.

Note that in Table 6, for Ver 2.0 (marked with “dis”), the timings outside the parentheses are
from dis-smvm, the timings in parentheses are from dis-smvm-brdest. When the number of
processors is large, in most cases dis-smvm is much better than dis-smvm-brdest. When the
number of processors is small, the running times of these two methods are similar.

Now we examine the SMVM timings for Ver 1.0 in Table 9. Note that for each multiplication,
the sequentail method is much slower than the parallel one. However, it does not need an initial-
iztion. The data in parentheses in Table 6 are the running time of using glb-smvm-sequential
instead of using glb-smvm. In some cases, especially when matrix is sparse or number of pro-
cessors 1s small, the sequential method is faster. Because even though the sequential method
takes much more time than the parallel one in each steps, it saves the communications used for
distributing B to the diagonal processors (before triangular solve) and gathering the X from the
diagonal processors onto all processors (after triangular solve). Therefore, if the matrix is sparser,
the overhead of the sequential sparse matrix-vector multiply 1s less; similarly, if the number of
processors is small, the overhead is also small. However, when the matrix is less sparse or the
number of processors is much larger, the overhead of the sequential method maybe larger than the
gain from the communication saved. Clearly, there is a trade-off here.

4 Fortran 90 Interface

Due to Fortran’s popularity in scientific computing, we also developed a Fortran interface of Su-
perLU_DIST for Fortran 90 users. Using this interface, they can call Superl U_DISTto slove linear
systems in their Fortran applications. All the interface files and an example driver program are
located in the SuperLU_DIST/FORTRAN/ subdirectory. Table 11 lists all the files.

Note that in this interface, all objects (such as grid, options, etc.) in SuperLU_DIST are
opague: their size and structure are not visible to the Fortran user. These opaque objects are
allocated, deallocated and operated in the C side and not directly accessible from Fortran side.



MMD ordering

P=8x8 P=8x16
dis-smvm (Ver 2.0) Refine | Init-SMVM | one SMVM | Refine | Init-SMVM | one SMVM
ir 2.40 0.01-0.02 0.00-0.01 2.84 0.01-0.02 0.00-0.02
dds.quadratic 3.94 0.02-0.03 0.01-0.02 4.33 0.04-0.05 0.01-0.02
dds15 11.77 0.04-0.06 0.01-0.03 14.72 0.03-0.06 0.01-0.02
dis-smvm-brdest Refine | Init-SMVM | one SMVM || Refine | Init-SMVM | one SMVM
ir 2.49 0.00-0.01 0.02-0.03 3.05 0.00-0.02 0.02-0.04
dds.quadratic 3.98 0.00-0.01 0.04-0.05 4.44 0.00-0.01 0.04-0.05
dds15 11.31 0.00-0.02 0.08-0.10 13.96 0.00-0.01 0.08-0.10
glb-smvm (Ver 1.0) Refine | Init-SMVM | one SMVM || Refine | Init-SMVM | one SMVM
ir 2.91 0.16-0.18 0.00 3.02 0.16-0.18 0.00
dds.quadratic 5.35 0.74-0.81 0.01 5.38 0.72-0.82 0.00-0.01
dds15 19.82 0.73-0.82 0.01 15.88 0.72-0.81 0.00-0.01
glb-smvm-sequential || Refine | Init-SMVM | one SMVM || Refine | Init-SMVM | one SMVM
ir 3.71 0.00 0.35-0.38 3.93 0.00 0.35-0.38
dds.quadratic 8.42 0.00 1.38-1.43 8.87 0.00 1.38-1.54
dds15 16.65 0.00 1.56-1.75 19.28 0.00 1.56-1.69
ND ordering
P=8x8 P=8x16

dis-smvm (Ver 2.0) Refine | Init-SMVM | one SMVM || Refine | Init-SMVM | one SMVM
ir 2.63 0.01-0.03 0.00-0.02 3.19 0.01-0.04 0.00-0.03
dds.quadratic 3.61 0.03-0.04 0.01-0.03 4.17 0.02-0.05 0.01-0.02
dds15 16.88 0.04-0.06 0.01-0.03 17.91 0.04-0.08 0.01-0.03
dis-smvm-brdest Refine | Init-SMVM | one SMVM || Refine | Init-SMVM | one SMVM
ir 2.62 0.00 0.02-0.03 3.13 0.00-0.01 0.03-0.04
dds.quadratic 3.91 0.00-0.01 0.04-0.05 4.24 0.00-0.01 0.05-0.06
dds15 16.63 0.00-0.02 0.08-0.11 18.77 0.00-0.01 0.08-0.10
glb-smvm (Ver 1.0) Refine | Init-SMVM | one SMVM || Refine | Init-SMVM | one SMVM
ir 3.20 0.15-0.17 0.00 3.30 0.15-0.17 0.00
dds.quadratic 5.18 0.71-0.79 0.01-0.02 5.13 0.70-0.81 0.00-0.01
dds15 30.38 0.69-0.77 0.01-0.02 20.08 0.68-0.78 0.00-0.01
glb-smvm-sequential || Refine | Init-SMVM | one SMVM || Refine | Init-SMVM | one SMVM
ir 3.96 0.00 0.32-0.33 4.04 0.00 0.32-0.35
dds.quadratic 8.46 0.00 1.40-1.45 8.75 0.00 1.41-1.47
dds15 21.47 0.00 1.50-1.67 23.21 0.00 1.50-1.57

Table 9: The running times of the four SMVM algorithms on 64 and 128 processors.

10




MMD ordering
n Local Nozeros | % of z Send | % of z Recv | Msgs Send | Msgs Recv
ir (P = 64) 186230 35823-48244 2.7%-4.4% 2.7%-5.8% 3-26 5-26
(P =128) 17212-24359 2.0%-2.9% 1.4%-4.1% 7-43 10-43
dds.quadratic | 380698 | 230938-277626 2.2%-4.0% 1.8%-5.9% 5-40 8-28
(P =128) 113768-145896 1.4%-2.6% 1.0%-4.7% 8-55 9-48
dds15 834575 | 192160-214392 1.7%-3.2% 1.2%-3.9% 4-19 4-23
(P =128) 87555-107285 1.0%-2.0% 0.9%-2.6% 8-32 7-37
ND ordering
ir (P =64) 186230 35823-48244 3.3%-4.9% 3.0%-5.8% 4-33 7-29
(P =128) 17212-24359 2.0%-3.3% 1.4%-4.1% 8-52 10-48
dds.quadratic | 380698 | 230938-277626 2.8%-4.3% 2.3%-6.3% 5-40 7-25
(P =128) 113768-145896 1.5%-2.6% 1.2%-4.7% 8-57 9-39
dds15 834575 | 192160-214392 1.8%-3.2% 1.7%-3.9% 4-21 4-18
(P =128) 87555-107285 1.2%-2.0% 1.0%-2.6% 7-32 7-36

Table 10: The size and number of messages transferred by each processor in dis-smvm, using 64
and 128 processors.
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Figure 1: The number and size of messages transfered by each processor in dis-smvm, and the
number of local nonzeros on each processor. Here we use 64 processors with matrix zr.
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f_pddrive.f90 An example Fortran driver routine.

superlu_mod.f90 Fortran 90 module that defines the wrapper functions to access Superl, U_DIST
data structures. These functions have with optional arguments so the user
does not have to provide the full set of components.

superlupara.f90 It contains parameters that correspond to SuperL U_DIST’s enums.

hbcodel.f90 Fortran function for reading a sparse Harwell-Boeing matrix from
the file.

superlu_c2f_wrap.c C wrapper functions, callable from Fortran. The functions fall

into three classes: 1) Those that allocate a structure and return
a handle, or deallocate the memory of a structure. 2) Those that
get or set the value of a component of a struct. 3) Those that

are wrappers for Superl U_DIST functions.

dcreate_matrix_dist.c ~ C function for distributing the matrix in a distributed
compressed row format. Note that here we adjust the 1-based
indexing to 0-based indexing which is required by the C routines.

Table 11: All the interface files and an example driver routine

They can only be accessed via handles that are exist in user space. In Fortran, all handles have
type INTEGER. Specifically, in our interface, the size of Fortran handle is defined by superlu_ptr
in superlupara.f90. For different systems, the size might need to be changed. Then using these
handles, Fortran user can call C wrapper routines to manipulate the opaque objects. For example,
you can call f_create_gridinfo(grid_handle) to allocate memory for structure grid, and return a handle
grid_handle. All callable interface (wrapper) routines are listed in Appendix.

The sample program illustrates the basic steps required to use SuperLU_DIST in Fortran to
solve systems of equations. These include how to set up the processor grid and the input matrix,
how to call the linear equation solver. This program is listed below, and is also available as
f_pddrive.f90 in the subdirectory. Note that the routine must include the moudle superlu_mod
which contains the definitions of all parameters and the Fortran wrapper functions. A Makefile is
provided to generate the executable. A README file in this subdirectory shows how to run the
example.

program f_pddrive

! Purpose

! The driver program F_PDDRIVE.

! This example illustrates how to use F_PDGSSVX with the full
| (default) options to solve a linear system.

! Seven basic steps are required:

! 1. Create C structures used in SuperLU

2. Initialize the MPI environment and the SuperLU process grid
! 3. Set up the input matrix and the right-hand side

4. Set the options argument
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! 5. Call f_pdgssvx
! 6. Release the process grid and terminate the MPI environment
! 7. Release all structures

use superlu_mod

include ’mpif.h’

implicit none

integer maxn, maxnz, maxnrhs

parameter ( maxn = 10000, maxnz = 100000, maxnrhs = 10 )
integer rowind(maxnz), colptr(maxn)

real*8 values(maxnz), b(maxn), berr(maxnrhs)

integer n, m, nnz, nrhs, 1ldb, i, ierr, info, iam
integer nprow, npcol

integer init

integer(superlu_ptr) :: grid
integer(superlu_ptr) :: options
integer(superlu_ptr) :: ScalePermstruct
integer(superlu_ptr) :: LUstruct
integer(superlu_ptr) :: SOLVEstruct
integer(superlu_ptr) :: A4
integer(superlu_ptr) :: stat

! Create C structures used in SuperLU
call f_create_gridinfo(grid)
call f_create_options(options)
call f_create_ScalePermstruct(ScalePermstruct)
call f_create_LUstruct(LUstruct)
call f_create_SOLVEstruct(SOLVEstruct)
call f_create_SuperMatrix(A)
call f_create_SuperLUStat(stat)

! Initialize MPI environment
call mpi_init(ierr)

! Initialize the SuperLU process grid
nprow = 2
npcol = 2
call f_superlu_gridinit(MPI_COMM_WORLD, nprow, npcol, grid)

! Bail out if I do not belong in the grid.
call get_GridInfo(grid, iam=iam)
if ( iam >= nprow * npcol ) then

go to 100
endif
if ( iam == 0 ) then

write(*,*) ’ Process grid ’, nprow, ’ X ’, mpcol
endif

! Read Harwell-Boeing matrix
if ( iam == 0 ) then
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call hbcodel(m, n, nnz, values, rowind, colptr)
endif

! Distribute the matrix to the gird
call f_dcreate_matrix_dis(A, m, n, nnz, values, rowind, colptr, grid)

! Setup the right hand side
nrhs = 1
call get_CompRowLoc_Matrix(4, nrow_loc=1db)
doi=1, 1db
b(i) = 1.0
enddo

! Set the default input options
call f_set_default_options(options)

! Set one or more options
! call set_superlu_options(options,Fact=FACTORED)

! Initialize ScalePermstruct and LUstruct
call get_SuperMatrix(A,nrow=m,ncol=n)
call f_ScalePermstructInit(m, n, ScalePermstruct)
call f_LUstructInit(m, n, LUstruct)

! Initialize the statistics variables
call f_PStatInit(stat)

! Call the linear equation solver
call f_pdgssvx(options, A, ScalePermstruct, b, 1ldb, nrhs, &
grid, LUstruct, SOLVEstruct, berr, stat, info)

if (info == 0) then

write (*,*) ’Backward error: ’, (berr(i), i = 1, nrhs)
else

write(*,*) ’INFO from f_pdgssvx = ’, info
endif

! Deallocate SuperLU allocated storage
call f_PStatFree(stat)
call f_Destroy_CompRowLoc_Matrix_dis(A)
call f_ScalePermstructFree(ScalePermstruct)
call f_Destroy_LU(n, grid, LUstruct)
call f_LUstructFree(LUstruct)
call get_superlu_options(options, SolveInitialized=init)
if (init == YES) then
call f_dSolveFinalize(options, SOLVEstruct)
endif

! Release the SuperLU process grid
100  call f_superlu_gridexit(grid)

! Terminate the MPI execution environment
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call mpi_finalize(ierr)

! Destroy all C structures

call f_destroy_gridinfo(grid)

call f_destroy_options(options)

call f_destroy_ScalePermstruct(ScalePermstruct)
call f_destroy_LUstruct(LUstruct)

call f_destroy_SOLVEstruct(SOLVEstruct)

call f_destroy_SuperMatrix(4)

call f_destroy_SuperLUStat(stat)

stop
end

Similar to the driver routine pddrive.c in C, seven basic steps are required to call a Su-
perLU_DIST routine in Fortran:

1.

Create C structures used in SuperLU: grid, options, ScalePermstruct, LUstruct, SOLVEstruct,
A and stat. This is achieved by the calls to the C wrapper “create” routines f_create_ XXX,
where XXX is the name of the corresponding strucuture.

. Initialize the MPI environment and the SuperLU process grid. This is achieved by the

calls to mpidnit and the C wrapper routines f_superlu_gridinit. Note that when calling
f_superlu_gridinit, it requires the numbers of row and column of the grid. In this example, we
set them to 2s.

. Set up the input matrix and the right-hand side. This example uses SuperL U_DIST Ver 2.0

kernel, so we need to convert input matrix to the distributed compressed row format. Process
0 first reads the input matrix stored on disk in Harwell-Boeing format [3] by calling Fortran
routine hbcodel. Then all processes call a C wrapper routine f_dcreate_matrix_dis to distribute
the matrix to the grid in a distributed compressed row format. The right-hand side matrix
in this example is set to one column of all ones. Note that, before setting the right-hand side,
we use get_CompRowlLoc_Matrix to get the number of local rows in the distributed matrix A.

Set the input arguments: options, ScalePermstruct, LUstruct, stat. The input argument op-
tions controls how the linear system would be sloved —use equilibration or not, how to or-
der the rows and the columns of the matrix, use iterative refinement or not. The routine
f_set_default_options sets the options argument so that the slover performs all the functionality.
You can also set it up according to your own needs, using a call set_superlu_options. LUstruct
is the data struture in which the distributed L and U factors are stored. ScalePermstruct is
the data struture in which several vectors describing the transformations done to matrix A
are stored. stat is a structure collecting the statistcs about runtime and flop count. These
three structures can be set by calling the C wrapper “nit” routines f_XXXlnit.

. Call the C wrapper routine f_pdgssvx for linear equation solver.

. Release the process grid and terminate the MPI environment. After the computation on a

process grid has been completed, the process grid should be released by a call f_spuerlu_gridexit.
When all computations have been completed, the C wrapper routine mpi_finalize should be

called.

Release all structures. First we need to deallocate storage SuperLu allocated using a set of
“free” calls. Note that this should be called before f_spuerlu_gridexit since some of “free” calls
use the grid. Then we call the C wrapper “destroy” routines f_destroy_XXX to destroy all C
structures. Note that f_destroy_gridinfo should be called after f_spuerlu_gridexit.
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5 Conclusions

In this report, we evaluated the performance of the two versions of SuperL U_DIST, one with global
input interface (Ver 1.0), and another with distributed input interface (V 2.0), using up to 128
processors of the IBM SP parallel machine. Clearly, Ver 2.0 has memory advantage over Ver 1.0.
In terms of runtime, our results on the IBM SP show that there is very little difference between
the two versions, even though Ver 2.0 requires much more communication for data redistribution.
This 1s because the cost of extra communication in Ver 2.0 can well offset the cost of the extra
local memory access in Ver 1.0. It remains to see whether this also holds for a more loosely coupled
cluster environment, where interprocessor communication is relatively more expensive.

Furthermore, we compared the performance of four different sparse matrix-vector multiplication
methods in the context of iterative refinement. Each method has its own merit depending on the
input matrices and number of processors used. We also compared the runtime difference between
various addressing modes. Usually, 32-bit is faster, but no more than a factor of two. In most
cases, the difference is small. However, 64-bit is needed when the matrix is very large.

Finally, we developed a Fortran 90 interface for Ver 2.0 so that the Fortran users can use this
solver easily. Our implementation uses opaque objects and includes Fortran wrapper functions to
access those objects created in C.
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Appendix: User-callable functions in Fortran interface

Callable Functions from C wrapper spuerlu_c2f_wrap.c:

/* functions that create memory for a struct and return a handle */
void f_create_gridinfo(fptr *handle)

void f_create_options(fptr *handle)

void f_create_ScalePermstruct(fptr *handle)

void f_create_LUstruct(fptr *handle)

void f_create_SOLVEstruct(fptr *handle)

void f_create_SuperMatrix(fptr *handle)

void f_create_SuperLUStat(fptr *handle)

/* functions that free the memory allocated by the above functions */
void f_destroy_gridinfo(fptr *handle)

void f_destroy_options(fptr *handle)

void f_destroy_ScalePermstruct(fptr *handle)

void f_destroy_LUstruct(fptr *handle)

void f_destroy_SOLVEstruct(fptr *handle)

void f_destroy_SuperMatrix(fptr *handle)

void f_destroy_SuperLUStat(fptr *handle)

/* functions that get or set values in a C struct. */

void f_get_gridinfo(fptr *grid, int *iam, int *nprow, int *npcol)
void f_get_SuperMatrix(fptr *A, int *nrow, int *ncol)
void f_set_SuperMatrix(fptr *A, int #*nrow, int *ncol)
void f_get_CompRowLoc_Matrix(fptr *A, int *m, int *n, int *nnz_loc,
int *m_loc, int *fst_row)
void f_set_CompRowLoc_Matrix(fptr *A, int *m, int *n, int *nnz_loc,
int *m_loc, int *fst_row)
void f_get_superlu_options(fptr *opt, int *Fact, int *Trans, int *Equil,
int *RowPerm, int *ColPerm, int *ReplaceTinyPivot,
int *IterRefine, int *Solvelnitialized,
int *RefineInitialized)
void f_set_superlu_options(fptr *opt, int *Fact, int *Trans, int *Equil,
int *RowPerm, int *ColPerm, int *ReplaceTinyPivot,
int *IterRefine, int *Solvelnitialized,
int *RefineInitialized)

/* wrappers for SuperLU functions */

void f_set_default_options(fptr *options)

void f_superlu_gridinit(int *Bcomm, int *nprow, int *npcol, fptr *grid)
void f_superlu_gridexit(fptr *grid)

void f_ScalePermstructInit(int *m, int *n, fptr *ScalePermstruct)
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void f_ScalePermstructFree(fptr *ScalePermstruct)
void f_PStatInit(fptr *stat)
void f_PStatFree(fptr *stat)
void f_LUstructInit(int *m, int #n, fptr *LUstruct)
void f_LUstructFree(fptr *LUstruct)
void f_Destroy_LU(int *n, fptr *grid, fptr *LUstruct)
void f_dCreate_CompRowlLoc_Matrix_dist(fptr *A, int *m, int *n, int *nnz_loc,
int *m_loc, int *fst_row, double *nzval,
int *colind, int *rowptr, int *stype,
int *dtype, int *mtype)
void f_Destroy_CompRowLoc_Matrix_dist(fptr *A)
void f_dSolveFinalize(fptr *options, fptr *SOLVEstruct)
void f_pdgssvx(fptr *options, fptr *A, fptr *ScalePermstruct, double *B,
int *1db, int *nrhs, fptr *grid, fptr *LUstruct,
fptr *SOLVEstruct, double *berr, fptr *stat, int *info)
void f_dcreate_matrix_dis(fptr *A, int #*m, int *n, int *nnz, double *nzval,
int *rowind, int *colptr, fptr *grid)
void f_check_malloc(int *iam)

Callable Functions from Fortran wrapper spuerlu_mod.f90:

subroutine get_GridInfo(grid, iam, nprow, npcol)
integer(superlu_ptr) :: grid
integer, optional :: iam, nprow, npcol

subroutine get_SuperMatrix(A, nrow, ncol)
integer(superlu_ptr) :: A
integer, optional :: nrow, ncol

subroutine set_SuperMatrix(A, nrow, ncol)
integer(superlu_ptr) :: A
integer, optional :: nrow, ncol

subroutine get_CompRowLoc_Matrix(A, nrow, ncol, nnz_loc, nrow_loc, fst_row)
integer(superlu_ptr) :: A4
integer, optional :: nrow, ncol, nnz_loc, nrow_loc, fst_row

subroutine set_CompRowLoc_Matrix(A, nrow, ncol, nnz_loc, nrow_loc, fst_row)
integer(superlu_ptr) :: A4
integer, optional :: nrow, ncol, nnz_loc, nrow_loc, fst_row

subroutine get_superlu_options(opt, Fact, Trans, Equil, RowPerm, &
ColPerm, ReplaceTinyPivot, IterRefine, &
SolveInitialized, RefineInitialized)

integer(superlu_ptr) :: opt

integer, optional :: Fact, Trans, Equil, RowPerm, ColPerm, &
ReplaceTinyPivot, IterRefine, Solvelnitialized, &
RefineInitialized

subroutine set_superlu_options(opt, Fact, Trans, Equil, RowPerm, &
ColPerm, ReplaceTinyPivot, IterRefine, &
SolveInitialized, RefineInitialized)
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integer(superlu_ptr) :: opt

integer, optional :: Fact, Trans, Equil, RowPerm, ColPerm, &
ReplaceTinyPivot, IterRefine, SolveInitialized, &
RefineInitialized
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